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Chapter 9

Response Properties of Pulvinar Neurons
Studied with Single-Unit Electrophysiological
Recordings

Mathers and Rapisardi (1973) studied the visual and somatosensory responses of

the squirrel monkey pulvinar, where they described visual neurons in subregions

PL, PI, and PM. Most neurons exhibited a definable receptive field, while only a

few responded to diffuse illumination. Approximately twice as many neurons in PI

were responsive to light compared to neurons in PL or PM. Nearly all neurons with

identifiable receptive fields responded to visual stimulation within 25� of the fovea,
on the hemifield contralateral to the recording electrode. The majority of the visual

units were responsive to some form of moving stimulus, and some exhibited

direction or orientation selectivity. Most visual neurons were monocularly driven

and exhibited receptive fields of at least 100 square degrees in area. Mathers and

Rapisardi (1973) also found somatosensory neurons in PL. Most of these units

exhibited continuous peripheral receptive fields, though a few of these neurons

could be bilaterally activated.

In order to systematize our electrophysiological findings and to enable a coher-

ent presentation of the data, we have classified the neurons recorded in the pulvinar

according to their functional properties (Gattass et al. 1978a, b). The units were

thereby assigned to eight different categories or groups, as summarized in Fig. 9.1.

The first tier of this classification segregates the pulvinar neurons into either

static or dynamic units. Neurons classified as static showed a brisk response to

stationary stimuli presented over their receptive fields and a similar or weaker

response to moving stimulus. In contrast, dynamic units showed poor or no

response to stationary stimuli but a brisk response to moving stimuli. Dynamic

units predominated (75%) over static ones (25%). About 15% of the units could not

be categorized as either static or dynamic and were thereby designated as

“unclassified.”

Generally, the dynamic units were tuned for stimulus velocity. Static units

responded tonically (58%) or, less frequently, phasically (42%) to stimulus onset

or offset. In contrast, dynamic units always responded phasically to such stimulus

transients.
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9.1 Neurons Classified as “Static”

Static units can be further subdivided on the basis of their receptive field organiza-

tion. Units classified as “uniform” showed similar response properties throughout

the extent of their receptive fields. In contrast, units classified as “nonuniform”

exhibited more complex receptive field structure, as outlined below.

9.1.1 Uniform Non-oriented (Group 1)

The “uniform non-oriented” units were nonselective to stimulus orientation and

displayed somewhat homogeneous response properties across their receptive field.

However, their receptive field borders were not always definable, and some units

responded to diffuse illumination. Figure 9.2 illustrates an example of such a unit,

which responds with a tonic on discharge during stimulus presentation. Note that

the response to a 7� spot varies in magnitude depending on the stimulation site

within the receptive field.

Fig. 9.1 Classification of pulvinar neurons based on their functional response properties measured

with electrophysiological recordings. When the data available did not permit a reliable classifica-

tion of a unit, it was included under a separate heading (i.e. ‘unclassified’). The number of units

classified under each heading is shown in parenthesis [modified from Gattass et al. (1979)]
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9.1.2 Nonuniform Non-oriented (Group 2)

Neurons classified as “nonuniform non-oriented” were similar to Group 1, except

that their receptive field subregions exhibited distinct functional properties.

Namely, these neurons responded with either excitation or inhibition depending

on the portion of the receptive field being stimulated. For the subset of pulvinar

neurons studied in Gattass et al. (1979), responses to stimulus onset or offset could

always be evoked by stimulating the receptive field center. Interestingly, visual

stimulation on the receptive field periphery was always phasic, regardless if the

response to receptive field center stimulation was tonic or phasic.

9.1.3 Nonuniform Oriented (Group 3)

The Group 3 “nonuniform oriented” neurons distinguish themselves from Group

2 by their selectivity to visually oriented stimuli presented within their receptive

field. The responses to static stimuli presented to the receptive field center were

predominately excitatory and tonic, even though inhibitory or phasic responses

could also be observed, especially when stimulating the receptive field surround.

Indeed, we observed nonuniformities in the functional organization of these recep-

tive fields. The responses reflected different degrees of center vs. surround interac-

tion, where center-surround antagonism was usually predominant. An example of a

Group 3 unit is illustrated in Fig. 9.3. Note the tonic sustained response when

stimulating the receptive field center (Fig. 9.3-A2) and the phasic response when

Fig. 9.2 Group 1 unit isolated in P1. This unit gives an on-tonic response to stimuli presented

anywhere within its RF. In (a), the number of crosses indicates the relative magnitude of the

response to a 7� spot. Note that the response magnitude does not vary appreciably when either a 7�

spot (b), a 21� spot (c) or diffuse light (not shown) is presented to the RF. The continuous line

below the post-stimulus time histograms (psth) indicates stimulus duration. (b) and (c) represent
two on-off psths of the cumulative number of events that occurred in each of 256 bins following the

onset (on) and interruption (off) of the stimulus presentation. The time span covered by each bin is

adjustable. Each histogram represents the cumulative acquisition of 30 trials. Abbreviations used

in this and in the other figures: VM vertical meridian, HM horizontal meridian, Sp/s discharge rate
in spikes per second [modified from Gattass et al. (1979)]
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Fig. 9.3 Response characteristics of a P1 single unit (Group 3). (A1), (A2), (A3) and (A4) illustrate

on-off psths corresponding to neuronal responses to a stopped slit (2.5� wide) presented in four

distinct regions of the RF (top left panel). Note the tonic on-response in (A2) contrasting with the

phasic on-off response to stimulation in other regions of the receptive field. Panels B1, B2, B3 and

B4 illustrate psths of the cumulative number of spike events for each direction of stimulus

displacement across the screen (top right panel). The plots in (B) correlate neuronal firing with

stimulus displacement in the directions indicated by the arrows. Note that the neuron exhibits a

preferred stimulus orientation (see Panels B1 and B3), but does not show direction selectivity.

Stimulus velocity ¼ 13�/s. Data was gathered for 30 trials (Panels A1–A4) and for 15 trials (Panels

B1–B4) [modified from Gattass et al. (1979)]
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stimulating the receptive field flanks (Fig. 9.3-A1, A3 and A4). Panels B1-4 illustrate

the orientation selectivity of this particular unit.

9.2 Neurons Classified as “Dynamic”

The main criterion for pulvinar neurons to be classified as “dynamic” constituted

their poor response to static stimuli being presented over their receptive fields.

Dynamic units could be additionally subdivided based on their sensitivity to

stimulus motion direction. Within the “dynamic” group, the majority of the units

were direction selective. Units that were nondirection selective usually responded

to a luminous spot moving along any axis within their receptive field. Interestingly,

units classified as “dynamic” were predominately binocularly driven.

9.2.1 Nondirectional Uniform Non-oriented (Group 4)

Only a small proportion of the “dynamic” units were found to be nonselective for

either stimulus direction or orientation. Neurons exhibiting these response charac-

teristics were evenly distributed as presenting a uniform (Group 4) or a nonuniform

(i.e., structured; see Group 5) receptive field organization. The neurons showing

uniform responses discharged briskly when a spot of light crossed the borders of

their receptive fields, including when the stimulus swept at high velocities. How-

ever, sustained tonic responses could be elicited using “jerky stimulus movements.”

9.2.2 Nondirectional Nonuniform with Structure (Group 5)

The pulvinar neurons with nonuniform receptive fields (Group 5) contrast with

those having uniform receptive fields (Group 4) in two ways: Group 5 neurons have

smaller receptive fields and show a preference for low stimulus velocities, com-

pared to those neurons classified as Group 4. The work of Gattass et al. (1979)

reported on only three units belonging to Group 5. Two of them had a receptive field

with a center-surround organization, and one had subregions within its receptive

field that were selective to different stimulus properties. Figure 9.4 illustrates a

Group 5 neuron with center-surround receptive field organization. The presentation

of a static stimulus restricted to the receptive field center produced a weak phasic

response (Fig. 9.4b). An annular stimulus sparing the receptive center elicited no

response, while it also blocked the neuron from discharging during the simulta-

neous presentation of a center stimulus. Note that the unit exhibits no orientation or

direction selectivity (Fig 9.4c). The small difference in response amplitude

observed for the vertical (1–6) as compared to the horizontal (3–4) stimuli may
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be attributed to the larger area of the RF being activated when the slit was oriented

parallel to the long horizontal axis of the receptive field.

9.2.3 Directional Uniform Non-oriented (Group 6)

Neurons exhibiting direction selectivity were the most abundant visual units found

in the pulvinar. These neurons usually preferred slow stimulus velocities. They

could be subdivided into two broad categories: units exhibiting uniform receptive

fields either with (Group 7) or without (Group 6) orientation selectivity, as well as

units exhibiting nonuniform receptive fields (Group 8). Group 6 neurons were

characterized by the fact that they responded equally well to either a spot of light

or to a broad set of oriented stimuli displaced across their receptive fields (Fig. 9.5).

9.2.4 Directional Uniform Oriented (Group 7)

Group 7 neurons distinguished themselves from Group 6 units by the presence of

orientation selectivity. The vast majority of these cells actually exhibited bidirec-

tional responses. They thereby elicited only weak responses to a spot of light

displaced across their receptive field. Accordingly, they were much more narrowly

Fig. 9.4 Example of non-directional unit showing surround suppression (Group 5). (a) Example

unit isolated in P4 and possessing a rectangular receptive field located at the level of the horizontal

meridian, near the fovea. (b) Phasic ON-OFF response evoked by a 2.5� diameter spot presented at

the center of the receptive field. (c) PSTHs of the responses of the same unit obtained when a full

slit (0.75� wide) is displaced across its receptive field in the directions indicated by the arrows

(stimulus velocity ¼ 9�/s, 20 trials) [modified from Gattass et al. (1979)]
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tuned to a preferred orientation compared to the previous group. Some units showed

responses suppression for visual stimuli orthogonal to the preferred orientation. An

example of a Group 7 unit is illustrated in Fig. 9.6.

9.2.5 Directional Nonuniform with Structure (Group 8)

Units classified as “direction nonuniform with structure” (Group 8) had basically

two types of receptive field organization. The simplest type of organization

exhibited receptive fields with a single responsive region surrounded by inhibitory

Fig. 9.5 Directional uniform non-oriented unit (Group 6). (a) Receptive field of the unit isolated

in P1. (b) The PSTHs illustrate the unidirectional response of the unit to a 1� wide full slit

(stimulus velocity ¼ 7�/s, 20 trials). Similar results were obtained when the slit was substituted by

a spot [modified from Gattass et al. (1979)]

Fig. 9.6 Unit isolated in P2 and assigned to Group 7. The receptive field of the isolated single unit,

located in the lower contralateral visual hemifield, shows bidirectional response to a full 2.5� wide
slit. Each PSTH was obtained from 15 trials. Arrows indicate the direction of stimulus displace-

ment (modified from Gattass et al. (1979)]
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flanks and was usually selective to a single direction of stimulus motion. The more

complex type showed receptive fields with multiple subregions interacting with

each other in intricate ways to produce a neuronal response. At least one of these

subregions was found to have some form of direction selectivity. A representative

example of the latter type is illustrated in Fig. 9.7. Note the two identified sub-

regions of its receptive field. The first subregion, closer to the vertical meridian,

elicits inhibitory responses to both directions of motion of a vertically oriented

stimulus. Stimulation over the second subregion of the receptive field elicits

excitatory responses for a rightward moving vertical stimulus but inhibitory

responses for the opposite direction.

Other than the classification presented above based on the work of Gattass et al.

(1979), few other studies have attempted to systematically study the response

properties of pulvinar neurons. Benevento and Miller (1981) investigated the visual

properties of neurons in the caudal subdivision of PL (PLɣ) in the macaque monkey

and described large, unflanked, bilateral receptive fields, which seemed to be

disproportionately representing the central portion of the visual field. Additionally,

the majority of the units were sensitive to stimulus motion and responded to

binocular visual stimulation. Some neurons exhibited complex response interac-

tions within different subregions of their receptive fields, while others responded to

stimuli moving toward or away from the center of gaze.

A comparison of the different types of units found in the pulvinar with those

described in the various hierarchical stages of visual processing leads us to an

interesting question: what is the functional significance of units in the pulvinar

showing properties similar to those described at different levels of the visual

processing pathway? If we consider the pulvinar as a link between the

geniculostriate and retinotectal systems, the presence of receptive fields showing

various degrees of complexity is in accordance with an associative or integrative

function and therefore enables this thalamic structure to participate in circuits

Fig. 9.7 Isolated single unit exhibiting a complex receptive field organization (Group 8) recorded

in P1 (spike waveform depicted on the top right). PSTH containing the responses of 20 trials of the

isolated single unit displaying a bidirectional inhibitory response in the left portion of the receptive

field, while the right portion of the receptive field gave an excitatory response to the stimulus

moving in one direction and a inhibitory response to the stimulus moving in the opposite direction.

The stimulus was a full 2� wide slit moving at a velocity of 9�/s (modified from Gattass et al.

(1979)]
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involved in perceptual selection. This role would also help to explain the preser-

vation of form discrimination in both cats and monkeys after removal of striate and

peristriate cortices (Nakamura and Mishkin 1986). The presence of neurons in the

pulvinar with complex receptive fields and the dependence of their visual responses

on the animal’s arousal state (see below) could help to explain the severe deficit

produced by pulvinar lesions on discrimination tasks that require a high degree of

visual attention (Ward et al. 2002). Patients with pulvinar lesions show deficits in

spatial information coding for the contralateral visual hemifield. Specifically, these

patients have difficulty localizing stimuli in the affected visual space. These

difficulties extend to the binding of visual features that are dependent on spatial

information (Ward et al. 2002). Thalamic neglect in humans is rare, and severe

attentional deficits that occur due to pulvinar lesions typically do not persist for

longer periods. However, a milder cognitive deficit, which consists in slower

orienting responses to the contralesional hemifield, is found in some patients and

may be a residual form of thalamic neglect (Danziger et al. 2001–2002; Rafal and

Posner 1987).
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